滤波器的补充知识

滤波器的主要参数概念 (Definitions)

滤波器(filter)是指减少或消除谐波对电力系统影响的电气部件。滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

1. 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。

2. 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

3. 通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100%,也常用来表征滤波器通带带宽。

4. 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

5. 纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰(即峰值)。

6. 带内波动(Pass band Ripple):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是 1dB。

7. 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR<1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。

8. 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。

9. 阻带抑制度( stop-band rejection):衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB>1),KxdB=BWxdB/BW3dB,(X可为40dB、30dB、20dB等)。滤波器阶数越多矩形度越高——即K越接近理想值1,制作难度当然也就越大。

10. 延迟(Td):指信号通过滤波器所需要的时间,数值上为传输相位函数对角频率的导数,即Td=df/dv。

11. 带内相位线性度(phase linearity in band):该指标表征滤波器对通带内传输信号引入的相位失真大小。按线性相位响应函数设计的滤波器具有良好的相位线性度,但频率选择性很差,限于脉冲、或调相信号传输系统应用。

滤波器的主要特性指标

1、特征频率:

①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。

②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。

③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。

④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。

2、增益与衰耗

滤波器在通带内的增益并非常数。

①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益。

②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。

③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,则指增益dB值的变化量。

3、阻尼系数与品质因数

阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。

阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽, w0为中心频率,在很多情况下中心频率与固有频率相等。

4、灵敏度

滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。滤波器某一性能指标y对某一元件参数x变化的灵敏度记作Sxy,定义为: Sxy=(dy/y)/(dx/x)。

该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。

5、群时延函数

当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。

滤波器的作用和滤波器的类型

· 滤波器对不同频率的信号有不同的作用:在通带内使信号受到很小的衰减而通过;在通带与阻带之间的一段过渡带使信号受到不同程度的衰减;在阻带内使信号受到很大的衰减而起到抑制作用。

按照滤波器的三种频带在全频带中分布位置的不同,滤波器可分为以下四种基本类型:低通滤波器带通滤波器高通滤波器带阻滤波器。除此之外,还有一种滤波器——全通滤波器,各种频率的信号都能通过,但通过以后不同频率信号的相位有不同的变化,实际上全通滤波器是一种移相器。

·滤波器的类型

根据组成电路的不同,滤波器还可分为:LC无源滤波器RC无源滤波器特殊元件构成的无源滤波器RC有源滤波器

LC无源滤波器:由电感和电容构成,具有良好的频率选择特性,并且信号能量损失小、噪声低、灵敏度低。缺点:电感元件体积大不便于集成化、在低频和超低频范围内品质因数低(频率选择性差)。

RC无源滤波器:与LC无源滤波器相比,用电阻取代了电感,解决了体积大的缺陷,但此类滤波器的频率选择特性比较差,一般只用作低性能的滤波器。

特殊元件构成的无源滤波器:这类滤波器诸如:机械滤波器、压电陶瓷滤波器、晶体滤波器等。

工作原理一般是通过电能与机械能或分子振动的动能间的相互转换,并与器件固有频率谐振实现频率的选择,多用作频率选择性能很高的带通或者带阻滤波器。

优点:品质因数可达千万至数万、稳定性很高,可实现其他类型滤波器无法实现的特性。

缺点:种类有限、调整不方便,一般仅用于某些特殊场合。

RC有源滤波器:该类型的滤波器克服了RC无源滤波器中电阻元件消耗信号功率的缺陷,在电路中引入具有能量放大作用的有源器件如:电子管、晶体管、运算放大器等有源器件,能够弥补损失的能量,使RC滤波器既具有了像LC滤波器一样的良好频率选择特性,又具有体积小、便于集成的优点。

(以上内容整理自网络,如有侵权请联系删除!)

打开APP阅读更多精彩内容